19 research outputs found

    Optimal allocation of energy sources in hydrogen production for sustainable deployment of electric vehicles

    Full text link
    [EN] We analyze the use of hydrogen as a fuel for the automotive industry with the aim of decarbonizing the economy. Hydrogen is a suitable option for avoiding pollutant gas emissions, developing environmentally friendly tech-nologies, replacing fossil fuels with clean, renewable energies, and complying with the Paris Agreement and Glasgow resolutions. In this sense, renewable energies such as wind, solar, photovoltaic, geothermal, biomass, etc. can be used to produce the necessary hydrogen to power vehicles. In this way, the entire process from hydrogen production to its consumption as fuel will be 100% clean. If we are to meet future energy demands, it is necessary to forecast the amount of hydrogen needed, taking into account the facilities currently available and new ones that will be required for its generation, storage, and distribution.This paper presents a process for optimizing hydrogen production for the automotive industry that considers the amount of hydrogen needed, the type of facilities from which it will be produced, how the different sources of production are to be combined to achieve a competitive product, and the potential environmental impacts of each energy source. It can serve as a frame of reference for the various actors in the hydropower and automotive industries so that more efficient designs can be planned for the gradual introduction of hydrogen fuel cell ve-hicles (HFCVs).The methodology implemented in this paper sets an optimization problem for minimizing energy production costs and reducing environmental impacts according to the source of energy production. The EU framework with respect to the decarbonization of the economy, the percentages of the different types of energy sources used, and the non-polluting vehicle fleet in the automotive sector will be considered.Rubio Montoya, FJ.; Llopis-Albert, C.; Besa Gonzálvez, AJ. (2023). Optimal allocation of energy sources in hydrogen production for sustainable deployment of electric vehicles. Technological Forecasting and Social Change. 188:1-9. https://doi.org/10.1016/j.techfore.2022.1222901918

    Diseño de máquinas

    Full text link
    Esta publicación pretende cubrir los conocimientos básicos del diseño de elementos de máquinas para las titulaciones de Ingeniería. La obra se organiza en dos bloques, el primero, que está formado por tres capítulos, se inicia con un Capítulo de introducción sobre el fallo mecánico y el comportamiento mecánico de los materiales.El segundo Capítulo aborda el diseño bajo cargas constantes de tipo multiaxial, sirviendo de base para poder realizar a continuación el estudio bajo cargas variables (diseño a fatiga) que se aborda en el Capítulo tercero. El segundo Bloque se dedica al estudio de algunos de los elementos de máquinas más comunes, tales como los ejes que se estudian en el Capítulo cuarto, rodamientos,en el Capítulo quinto y por último las transmisiones, haciendo especial hincapié en el diseño de transmisiones por engranajes cilíndricos cuyo estudio centra el contenido del Capítulo sextoBesa Gonzálvez, AJ.; Valero Chuliá, FJ. (2016). Diseño de máquinas. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/70960EDITORIA

    Efficient trajectory of a car-like mobile robot

    Full text link
    This article is (c) Emerald Group Publishing and permission has been granted for this version to appear here https://riunet.upv.es/. Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited.[EN] Purpose The purpose is to create an algorithm that optimizes the trajectories that an autonomous vehicle must follow to reduce its energy consumption and reduce the emission of greenhouse gases. Design/methodology/approach An algorithm is presented that respects the dynamic constraints of the robot, including the characteristics of power delivery by the motor, the behaviour of the tires and the basic inertial parameters. Using quadratic sequential programming with distributed and non-monotonous search direction (Quadratic Programming Algorithm with Distributed and Non-Monotone Line Search), an optimization algorithm proposed and developed by Professor K. Schittkowski is implemented. Findings Relations between important operating variables have been obtained, such as the evolution of the autonomous vehicle's velocity, the driving torque supplied by the engine and the forces acting on the tires. In a subsequent analysis, the aim is to analyse the relationship between trajectory made and energy consumed and calculate the reduction of greenhouse gas emissions. Also this method has been checked against another different methodology commented on in the references. Research limitations/implications The main limitation comes from the modelling that has been done. As greater is the mechanical systems analysed, more simplifying hypotheses should be introduced to solve the corresponding equations with the current computers. However, the solutions are obtained and they can be used qualitatively to draw conclusions. Practical implications One main objective is to obtain guidelines to reduce greenhouse gas emissions by reducing energy consumption in the realization of autonomous vehicles' trajectories. The first step to achieve that is to obtain a good model of the autonomous vehicle that takes into account not only its kinematics but also its dynamic properties, and to propose an optimization process that allows to minimize the energy consumed. In this paper, important relationships between work variables have been obtained. Social implications The idea is to be friendly with nature and the environment. This algorithm can help by reducing an instance of greenhouse gases. Originality/value Originality comes from the fact that we not only look for the autonomous vehicle's modelling, the simulation of its motion and the analysis of its working parameters, but also try to obtain from its working those guidelines that are useful to reduce the energy consumed and the contamination capability of these autonomous vehicles or car-like robots.Valero Chuliá, FJ.; Rubio Montoya, FJ.; Besa Gonzálvez, AJ.; Llopis Albert, C. (2019). Efficient trajectory of a car-like mobile robot. Industrial Robot An International Journal. 46(2):211-222. https://doi.org/10.1108/IR-10-2018-0214S211222462Ghita, N., & Kloetzer, M. (2012). Trajectory planning for a car-like robot by environment abstraction. Robotics and Autonomous Systems, 60(4), 609-619. doi:10.1016/j.robot.2011.12.004Katrakazas, C., Quddus, M., Chen, W.-H., & Deka, L. (2015). Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions. Transportation Research Part C: Emerging Technologies, 60, 416-442. doi:10.1016/j.trc.2015.09.011Li, B., & Shao, Z. (2015). Simultaneous dynamic optimization: A trajectory planning method for nonholonomic car-like robots. Advances in Engineering Software, 87, 30-42. doi:10.1016/j.advengsoft.2015.04.011Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. (2016). Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems, 86, 106-112. doi:10.1016/j.robot.2016.09.008Rubio, F., Valero, F., Lluís Sunyer, J., & Garrido, A. (2010). The simultaneous algorithm and the best interpolation function for trajectory planning. Industrial Robot: An International Journal, 37(5), 441-451. doi:10.1108/01439911011063263Sariff, N., & Buniyamin, N. (2006). An Overview of Autonomous Mobile Robot Path Planning Algorithms. 2006 4th Student Conference on Research and Development. doi:10.1109/scored.2006.4339335Renny Simba, K., Uchiyama, N., & Sano, S. (2016). Real-time smooth trajectory generation for nonholonomic mobile robots using Bézier curves. Robotics and Computer-Integrated Manufacturing, 41, 31-42. doi:10.1016/j.rcim.2016.02.002Tokekar, P., Karnad, N., & Isler, V. (2014). Energy-optimal trajectory planning for car-like robots. Autonomous Robots, 37(3), 279-300. doi:10.1007/s10514-014-9390-

    A new approach to the kinematic modeling of a three-dimensional car-like robot with differential drive using computational mechanics

    Full text link
    [EN] This article presents a kinematic analysis of a four-wheeled mobile robot in three-dimensions, introducing computational mechanics. The novelty lies in (1) the type of robot that is analyzed, which has been scarcely dealt with in the literature, and (2) the methodology used which enables the systematic implementation of kinematic algorithms using the computer. The mobile robot has four wheels, four rockers (like an All-Terrain Mobile Robot), and a main body. It also has two actuators and uses a drive mechanism known as differential drive (like those of a slip/skid mobile robot). We characterize the mobile robot as a set of kinematic closed chains with rotational pairs between links and a higher contact pair between the wheels and the terrain. Then, a set of generalized coordinates are chosen and the constraint equations are established. A new concept named ¿driving modes¿ has been introduced because some of the constraint equations are derived from these. The kinematics is the first step in solving the dynamics of this robot in order to set a control algorithm for an autonomous car-like robot. This methodology has been successfully applied to a real mobile robot, ¿Robotnik,¿ and the results are analyzed.Rubio Montoya, FJ.; Llopis Albert, C.; Valero Chuliá, FJ.; Besa Gonzálvez, AJ. (2019). A new approach to the kinematic modeling of a three-dimensional car-like robot with differential drive using computational mechanics. Advances in Mechanical Engineering. 11(3):1-14. https://doi.org/10.1177/1687814019825907S114113Campion, G., Bastin, G., & Dandrea-Novel, B. (1996). Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation, 12(1), 47-62. doi:10.1109/70.481750Bajracharya, M., Maimone, M. W., & Helmick, D. (2008). Autonomy for Mars Rovers: Past, Present, and Future. Computer, 41(12), 44-50. doi:10.1109/mc.2008.479Poczter, S. L., & Jankovic, L. M. (2013). The Google Car: Driving Toward A Better Future? Journal of Business Case Studies (JBCS), 10(1), 7. doi:10.19030/jbcs.v10i1.8324Wang, T., Wu, Y., Liang, J., Han, C., Chen, J., & Zhao, Q. (2015). Analysis and Experimental Kinematics of a Skid-Steering Wheeled Robot Based on a Laser Scanner Sensor. Sensors, 15(5), 9681-9702. doi:10.3390/s150509681Alexander, J. C., & Maddocks, J. H. (1989). On the Kinematics of Wheeled Mobile Robots. The International Journal of Robotics Research, 8(5), 15-27. doi:10.1177/027836498900800502Muir, P. F., & Neuman, C. P. (1987). Kinematic modeling of wheeled mobile robots. Journal of Robotic Systems, 4(2), 281-340. doi:10.1002/rob.4620040209Tarokh, M., & McDermott, G. J. (2005). Kinematics modeling and analyses of articulated rovers. IEEE Transactions on Robotics, 21(4), 539-553. doi:10.1109/tro.2005.847602Zhang, N., Zhao, Y., Wei, H., & Chen, G. (2016). Experimental study on the influence of air injection on unsteady cloud cavitating flow dynamics. Advances in Mechanical Engineering, 8(11), 168781401667667. doi:10.1177/168781401667667

    Analytical study of the effects of soft tissue artefacts on functional techniques to define axes of rotation

    Full text link
    [EN] The accurate location of the main axes of rotation (AoR) is a crucial step in many applications of human movement analysis. There are different formal methods to determine the direction and position of the AoR, whose performance varies across studies, depending on the pose and the source of errors. Most methods are based on minimizing squared differences between observed and modelled marker positions or rigid motion parameters, implicitly assuming independent and uncorrelated errors, but the largest error usually results from soft tissue artefacts (STA), which do not have such statistical properties and are not effectively cancelled out by such methods. However, with adequate methods it is possible to assume that STA only account for a small fraction of the observed motion and to obtain explicit formulas through differential analysis that relate STA components to the resulting errors in AoR parameters. In this paper such formulas are derived for three different functional calibration techniques (Geometric Fitting, mean Finite Helical Axis, and SARA), to explain why each technique behaves differently from the others, and to propose strategies to compensate for those errors. These techniques were tested with published data from a sit-to-stand activity, where the true axis was defined using bi-planar fluoroscopy. All the methods were able to estimate the direction of the AoR with an error of less than 5 degrees whereas there were errors in the location of the axis of 30-40 mm. Such location errors could be reduced to less than 17 mm by the methods based on equations that use rigid motion parameters (mean Finite Helical Axis, SARA) when the translation component was calculated using the three markers nearest to the axis. (C) 2017 Elsevier Ltd. All rights reserved.This work was funded by the Spanish Government and co-financed by EU FEDER funds (Grant DPI2013-44227-R). We would like to thank Prof. Tung-Wu Lu, Tsung-Yuan Tsai, Mei-Ying Kuo and Horn-Chaung Hsu from National Taiwan University for making the data from their studies available for further research on STA,, and Dr. Tecla Bonci from the Italian University of Sport and Movement 'Foro Italico' for providing the access to benchmark data.De Rosario Martínez, H.; Page Del Pozo, AF.; Besa Gonzálvez, AJ. (2017). Analytical study of the effects of soft tissue artefacts on functional techniques to define axes of rotation. Journal of Biomechanics. 62:60-67. https://doi.org/10.1016/j.jbiomech.2017.01.046S60676

    Model of Soft Tissue Artifact Propagation to Joint Angles in Human Movement Analysis

    Full text link
    [EN] This work describes the kinematic laws that govern the transmission of soft tissue artifact errors to kinematic variables in the analysis of human movements. Artifacts are described as relative translations and rotations of the marker cluster over the bone, and a set of explicit expressions is defined to account for the effect of that relative motion on different representations of rotations: the rotation around the screw axis, or rotation vector, and three Euler angle sequences (XY0Z, YX0Y00, ZX0 Y00). Although the error transmission is nonlinear in all cases, the effect of artifacts is greater on Euler sequences than on the rotation vector. Specifically, there are crosstalk effects in Euler sequences that amplify the errors near singular configurations. This fact is an additional source of variability in studies that describe artifacts by comparing the Euler angles obtained from skin markers, with the angles of an artifact-free gold standard. The transmission of errors to rotation vector coordinates is less variable or dependent on the type of motion. This model has been tested in an experiment with a deformable mechanical model with a spherical joint.This work has been funded by the Spanish Government and co-financed by EU FEDER funds (Grants DPI2009-13830-C02-01 and DPI2009-13830-C02-02).Page Del Pozo, AF.; De Rosario Martínez, H.; Mata Amela, V.; Besa Gonzálvez, AJ. (2014). Model of Soft Tissue Artifact Propagation to Joint Angles in Human Movement Analysis. Journal of Biomechanical Engineering. 136:1-7. doi:10.1115/1.4026226S1713

    Navigation of Autonomous Light Vehicles Using an Optimal Trajectory Planning Algorithm

    Full text link
    [EN] Autonomous navigation is a complex problem that involves different tasks, such as location of the mobile robot in the scenario, robotic mapping, generating the trajectory, navigating from the initial point to the target point, detecting objects it may encounter in its path, etc. This paper presents a new optimal trajectory planning algorithm that allows the assessment of the energy efficiency of autonomous light vehicles. To the best of our knowledge, this is the first time in the literature that this is carried out by minimizing the travel time while considering the vehicle's dynamic behavior, its limitations, and with the capability of avoiding obstacles and constraining energy consumption. This enables the automotive industry to design environmentally sustainable strategies towards compliance with governmental greenhouse gas (GHG) emission regulations and for climate change mitigation and adaptation policies. The reduction in energy consumption also allows companies to stay competitive in the marketplace. The vehicle navigation control is efficiently implemented through a middleware of component-based software development (CBSD) based on a Robot Operating System (ROS) package. It boosts the reuse of software components and the development of systems from other existing systems. Therefore, it allows the avoidance of complex control software architectures to integrate the different hardware and software components. The global maps are created by scanning the environment with FARO 3D and 2D SICK laser sensors. The proposed algorithm presents a low computational cost and has been implemented as a new module of distributed architecture. It has been integrated into the ROS package to achieve real time autonomous navigation of the vehicle. The methodology has been successfully validated in real indoor experiments using a light vehicle under different scenarios entailing several obstacle locations and dynamic parameters.This work has been partially funded by FEDER-CICYT project with reference DPI2017-84201-R financed by Ministerio de Economia, Industria e Innovacion (Spain).Valera Fernández, Á.; Valero Chuliá, FJ.; Vallés Miquel, M.; Besa Gonzálvez, AJ.; Mata Amela, V.; Llopis-Albert, C. (2021). Navigation of Autonomous Light Vehicles Using an Optimal Trajectory Planning Algorithm. Sustainability. 13(3):1-23. https://doi.org/10.3390/su1303123312313

    Kinematic description of soft tissue artifacts: quantifying rigid versus deformation components and their relation with bone motion

    Full text link
    [EN] This paper proposes a kinematic approach for describing soft tissue artifacts (STA) in human movement analysis. Artifacts are represented as the field of relative displacements of markers with respect to the bone. This field has two components: deformation component (symmetric field) and rigid motion (skew-symmetric field). Only the skew-symmetric component propagates as an error to the joint variables, whereas the deformation component is filtered in the kinematic analysis process. Finally, a simple technique is proposed for analyzing the sources of variability to determine which part of the artifact may be modeled as an effect of the motion, and which part is due to other sources. This method has been applied to the analysis of the shank movement induced by vertical vibration in 10 subjects. The results show that the cluster deformation is very small with respect to the rigid component. Moreover, both components show a strong relationship with the movement of the tibia. These results suggest that artifacts can be modeled effectively as a systematic relative rigid movement of the marker cluster with respect to the underlying bone. This may be useful for assessing the potential effectiveness of the usual strategies for compensating for STA. © 2012 International Federation for Medical and Biological Engineering.This work has been funded by the Spanish Government and co-financed by EU FEDER funds (Grants DPI2009-13830-C02-01, DPI2009-13830-C02-02 and IMPIVA IMDEEA/2012/79 and IMDEEA/2012/80).De Rosario Martínez, H.; Page Del Pozo, AF.; Besa Gonzálvez, AJ.; Mata Amela, V.; Conejero Navarro, E. (2012). Kinematic description of soft tissue artifacts: quantifying rigid versus deformation components and their relation with bone motion. Medical & Biological Engineering & Computing. 50(11):1173-1181. https://doi.org/10.1007/s11517-012-0978-5S117311815011Akbarshahi M, Schache AG, Fernandez JW, Baker R, Banks S, Pandy MG (2010) Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity. J Biomech 43:1292–1301Alexander EJ, Andriacchi TP (2001) Correcting for deformation in skin-based marker systems. J Biomech 34:355–361Andersen MS, Benoit DL, Damsgaard M, Ramsey DK, Rasmussen J (2010) Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics. J Biomech 43:268–273Andriacchi TP, Alexander EJ, Toney MK, Dyrby C, Sum J (1998) A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J Biomech Eng 120:743–749Benoit DL, Ramsey DK, Lamontagne M, Xu L, Wretenberg P, Renström P (2006) Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24:152–164Camomilla V, Donati M, Stagni R, Cappozzo A (2009) Non-invasive assessment of superficial soft tissue local displacement during movement: a feasibility study. J Biomech 42:931–937Cappello A, Cappozzo A, La Palombara PF, Lucchetti L, Leardini A (1997) Multiple anatomical landmark calibration for optimal bone pose estimation. Hum Mov Sci 16:259–274Cappello A, Stagni R, Fantozzi S, Leardini A (2005) Soft tissue artifact compensation in knee kinematics by double anatomical landmark calibration: performance of a novel method during select motor tasks. IEEE Trans Biomed Eng 52:992–998Cappozzo A, Della Croce U, Leardini A, Chiari L (2005) Human movement analysis using stereophotogrammetry: part 1: theoretical background. Gait Posture 21:186–196Chèze L, Fregly BJ, Dimnet J (1995) A solidification procedure to facilitate kinematic analyses based on video system data. J Biomech 28:879–884Dumas R, Cheze L (2009) Soft tissue artifact compensation by linear 3D interpolation and approximation methods. J Biomech 42:2214–2217Ehrig RM, Taylor WR, Duda GN, Heller MO (2006) A survey of formal methods for determining the centre of rotation of ball joints. J Biomech 39:2798–2809Ehrig RM, Taylor WR, Duda GN, Heller MO (2007) A survey of formal methods for determining functional joint axes. J Biomech 40:2150–2157Fuller J, Liu LJ, Murphy MC, Mann RW (1997) A comparison of lower-extremity skeletal kinematics measured using skin- and pin-mounted markers. Hum Mov Sci 16:219–242Gao B, Zheng N (2008) Investigation of soft tissue movement during level walking: translations and rotations of skin markers. J Biomech 41:3189–3195Holden JP, Orsini JA, Siegel KL, Kepple TM, Gerber LH, Stanhope SJ (1997) Surface movement errors in shank kinematics and knee kinetics during gait. Gait Posture 5:217–227Leardini A, Chiari L, Della Croce U, Cappozzo A (2005) Human movement analysis using stereo photogrammetry: part 3. Soft tissue artifact assessment and compensation. Gait Posture 21:212–225Lucchetti L, Cappozzo A, Cappello A, Della Croce U (1998) Skin movement artefact assessment and compensation in the estimation of knee-joint kinematics. J Biomech 31:977–984Nester C, Jones RK, Liu A, Howard D, Lundberg A, Arndt A, Lundgren P, Stacoff A, Wolf P (2007) Foot kinematics during walking measured using bone and surface mounted markers. J Biomech 40:3412–3423Page A, de Rosario H, Mata V, Hoyos JV, Porcar R (2006) Effect of marker cluster design on the accuracy of human movement analysis using stereophotogrammetry. Med Biol Eng Comput 4:1113–1119Page A, de Rosario H, Mata V, Atienza C (2009) Experimental Analysis of Rigid Body Motion. A Vector Method to Determine Finite and Infinitesimal Displacements From Point Coordinates. J Mech Des 131: 031005Page A, Galvez JA, de Rosario H, Mata V, Prat J (2010) Optimal average path of the instantaneous helical axis in planar motions with one functional degree of freedom. J Biomech 43:375–378Peters A, Galna B, Sangeux M, Morris M, Baker R (2010) Quantification of soft tissue artifact in lower limb human motion analysis: a systematic review. Gait Posture 31:1–8Reinschmidt C, van den Bogert AJ, Lundberg A, Nigg BM, Murphy N, Stacoff A, Stano A (1997) Tibiofemoral and tibiocalcaneal motion during walking: external vs. skeletal markers. Gait Posture 6:98–109Ryu T, Choi HS, Chung MK (2009) Soft tissue artifact compensation using displacement dependency between anatomical landmarks and skin markers- a preliminary study. Int J Ind Ergon 39:152–158Sangeux M, Marin F, Charleux F, Dürselen L, Ho Ba Tho MC (2006) Quantification of the 3D relative movement of external marker sets vs. bones based on magnetic resonance imaging. Clin Biomech 21:984–991Sati M, de Guise JA, Larouche S, Drouin G (1996) Quantitative assessment of skin-bone movement at the knee. Knee 3(3):121–138Stagni R, Fantozzi S (2009) Can cluster deformation be an indicator of soft tissue artefact? Gait Posture 30(Suppl 1):S55Stagni R, Fantozzi S, Cappello A, Leardini A (2005) Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry: a study on two subjects. Clin Biomech 20(3):320–329Stagni R, Fantozzi S, Cappello A (2009) Double calibration vs global optimization: performance and effectiveness for clinical application. Gait Posture 29:119–122Taylor WR, Ehrig RM, Duda GN, Schell H, Seebeck P, Heller MO (2005) On the influence of soft tissue coverage in the determination of bone kinematics using skin markers. J Orthop Res 23(4):726–734Tranberg R, Karlsson D (1998) The relative skin movement of the foot: a 2-D roentgen photogrammetry study. Clin Biomech 13(1):71–76Tsai T-Y, Lu Tung-Wu, Kuo M-Y, Lin C–C (2011) Effects of soft tissue artifacts on the calculated kinematics and kinetics of the knee during stair-ascent. J Biomech 44(6):1182–1188Woltring HJ, Long K, Osterbauer PJ, Fuhr AW (1994) Instantaneous helical axis estimation from 3-D video data in neck kinematics for whiplash diagnostics. J Biomech 27(12):1415–143

    Propagation of Artifact Errors on Kinematic Variables. Effect on Euler Angles

    Full text link
    This work has been funded by the Spanish Government and co-financed by EU FEDER funds (Grants DPI2009-13830-C02-01, DPI2009-13830- C02-02 and IMPIVA IMIDIC/2010/84)De Rosario Martínez, H.; Page Del Pozo, AF.; Mata Amela, V.; Besa Gonzálvez, AJ.; Moreno Cano, R. (2012). PROPAGATION OF ARTIFACT ERRORS ON KINEMATIC VARIABLES. EFFECT ON EULER ANGLES. Journal of Biomechanics. 45:293-293. doi:10.1016/S0021-9290(12)70294-4S2932934

    Use of a PBL-approach to develop and to assess generic competences in a Master's degree in Mechanical Engineering

    Full text link
    [EN] This paper presents the work carried out within the framework of an educational innovation and improvement project developed during the last two years in the Master's Degree in Mechanical Engineering at the Technical University of Valencia (UPV). One of the main objectives of this project is the development and implementation of new methodologies for the evaluation of generic competences. Among these new methodologies, there is an approach through project-based learning, which allows for the incorporation of the assessment of some generic competences that was not done previously in a proper way. Therefore, several subjects have been coordinated, a new type of Master¿s Thesis has been proposed, with the collaboration of a company, and new assessment tools have been designed.The authors acknowledge the financial contribution by the Universitat Politècnica de València through the project PIME/2018/DPTO.IMM.Carballeira, J.; Tur Valiente, M.; Besa Gonzálvez, AJ.; Albelda Vitoria, J.; Tarancón Caro, JE.; Martínez Casas, J.; Denia Guzmán, FD.... (2020). Use of a PBL-approach to develop and to assess generic competences in a Master's degree in Mechanical Engineering. IATED Academy. 4913-4916. https://doi.org/10.21125/edulearn.2020.1286S4913491
    corecore